INTRODUCTION TO PROBABILITY MODELS

Lecture 35

Qi Wang, Department of Statistics

Nov 14, 2018

EXAMPLE 1

Heights of Pokémon are Normally Distributed with a mean of 59 inches and a standard deviation of 17 inches.

- 1. What is the standardized height (z-score) for Blastoise, who is 63 inches tall?
- 2. Using the Normal Table, find the probability that any Pokémon is taller than Blastoise
- 3. Knowing that a Pokémon is taller than Blastoise, what is the probability that it is taller than 70 inches?
- 4. What height corresponds to the top 10% of Pokémon heights?

NORMAL APPROXIMATION TO THE BINOMIAL

If a Binomial distribution has a large enough combination of n and p, it behaves much like a Normal distribution, which means we can use the Normal distribution to approximate the original Binomial distribution

- If $X \sim Bin(n, p)$, and np > 5, n(1 p) > 5
- Then we can use $X^* \sim N(\mu = np, \sigma = \sqrt{np(1-p)})$, to approximate *X*

You may notice that Binomial is Discrete, and Normal is Continuous. This means the approximation comes at a cost of accuracy that we must try to correct. When we use the approximation, we need to perform a continuity correction:

- If you're looking for: $P(a \le X \le b)$
- Use $P(a 0.5 < X^* < b + 0.5)$

TIME FOR QUIZ

CROSSTABS TABLE/CONTINGENCY TABLE

CROSSTABS TABLE/CONTINGENCY TABLE

- Describes the relationship between two categorical variables.
- Represents a table of counts (can include percentages).

Examples

- Gender versus major
- Political party versus voting status

Sometimes one or both variables are quantitative, but we classify them into categories for data collection and/or analysis. For example, suppose our variables are years of college education and income. We decide to group years of education into four classes: none, some college, Bachelor's degree, and post-graduate. We also decide to classify annual income in dollars into four classes: < 10,000, 10,000 - 30,000, 30,001 - 50,000, and > 50,000.

EXAMPLE 2

An instructor taught four sections of a large statistics course and had the following distribution of grades when the semester was finished.

Grade	One	Two	Three	Four	То
Α	12	18	10	12	
В	26	26	16	16	
С	28	20	24	18	
D	6	8	20	18	
F	4	4	8	12	
Total					

JOINT DISTRIBUTION

The **joint distribution** of the 2 categorical variables is the proportion of total cases in a cell $JointProbability = \frac{TotalInCell}{OverallTotal}$ All the joint distributions should add to 1 (or 100%). For example: 18/306 = 0.0588 or 5.88% is the joint distribution for people with grade of A AND Class time One. Joint distributions use or imply "AND". (i.e intersection)

Grade	One	Two	Three	Four	Tota
Α		5.88%		3.92%	16.9
В	8.50%		5.23%	5.23%	27.4
С	9.15%	6.54%	7.84%		29.4
D		2.61%	6.54%	5.88%	16.9
F	1.31%	1.31%	2.61%		9.15
Total	24.84%	24.84%	25.49%	24.84%	100

Fill in the table of Joint distributions:

MARGINAL DISTRIBUTION

The **marginal distribution** allows us to study 1 variable at a time. The marginal distributions of each categorical variable are obtained from row and column totals. Basically we are examining the distributions of a single variable in the two-way table. Marginal distributions allow us to compare the relative frequencies among the levels of a single categorical variable

- The marginals for the row variable should add to 1 (or 100%).
- 2. The marginals for the column variable should add to 1 (or 100%)

Find the marginal distribution of Class Time for Example 2

	One	Two	Three	Four	
Counts					
Percents					

Find the marginal distribution of Letter Grade for Example 2

Counts

Percents

CONDITIONAL DISTRIBUTION

In **conditional distributions**, we find the distribution of one categorical variable given a common level of another categorical variable. Look for key words to indicate a conditional—"given", "knowing", etc.

Find the conditional distribution of Letter Grade for Class Time One

A B C D F

Counts

Percents

Find the conditional distribution of Class Time for Letter Grade C.

	One	Two	Three	Four
Counts				
Percents				

ADDITIONAL QUESTIONS FOR EXAMPLE 2

- 1. What percent of students in Class time Four earned a B? Is this joint, conditional or marginal?
- 2. Of all students earning a B, what proportion were in Class time 4? Is this joint, conditional or marginal
- 3. What percent of students were enrolled in Class Time 3? Is this joint, conditional or marginal?
- 4. What proportion of students earned B's and were in Class time 2? Is this joint, conditional or marginal?